

Materials Engineering and Technologies

<https://met.cultechpub.com/met>

Cultech Publishing

Review

The Evolution of Nanofluids in Automotive Applications: Current State and Future Directions

Muhammad Ahmad Iqbal^{1,2,*}, Anum Shafiq²

¹Department of Materials and Technology for Vehicles, VSB-Technical University of Ostrava, Ostrava, Czech Republic

²IT4Innovations, VSB-Technical University of Ostrava, Ostrava, Czech Republic

*Corresponding authors: Muhammad Ahmad Iqbal, muhammad.ahmad.iqbal.st@vsb.cz

Abstract

The continuous advancement of automotive technology has intensified the demand for innovative materials that improve vehicle performance, energy efficiency, and sustainability. Nanofluids colloidal suspensions of nanoparticles within conventional base fluids have gained considerable attention due to their remarkable thermal and tribological properties. This review examines the current progress in nanofluid research, emphasizing their potential to enhance heat transfer, thermal management, and fuel economy in automotive systems. Nanofluids containing nanoparticles such as Al₂O₃, CuO, and carbon-based materials dispersed in base fluids like water or ethylene glycol have demonstrated superior thermal conductivity, enabling more compact and efficient heat exchangers, radiators, cooling systems, and engine lubricants. The review further explores their tribological advantages in minimizing friction and wear, as well as their contribution to improved combustion efficiency and reduced emissions in fuel systems. Despite these promising outcomes, challenges remain regarding nanoparticle dispersion stability, cost, and long-term performance. Economic factors, including raw material costs, synthesis requirements, and lifecycle considerations, also influence their practical adoption. Future research should focus on optimizing synthesis and stabilization techniques, assessing environmental implications, and developing hybrid nanofluids to maximize efficiency across diverse automotive applications. Overall, this review highlights the transformative potential of nanofluids in advancing automotive technologies while underscoring the need for continued research to address existing limitations and enable practical implementation.

Keywords

Nanofluids, Automotive cooling systems, Thermal management, Heat transfer enhancement, Tribological properties, Nanoparticle dispersion stability

Article History

Received: 20 October 2025

Revised: 31 December 2025

Accepted: 27 January 2026

Available Online: 03 February 2026

Copyright

© 2026 by the authors. This article is published by the Cultech Publishing Sdn. Bhd. under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0): <https://creativecommons.org/licenses/by/4.0/>

1. Introduction

The rapid evolution of automotive technologies has intensified the demand for advanced materials and fluid systems that can support higher performance, improved energy efficiency, and greater environmental sustainability. Among the emerging solutions, nanofluid suspensions of nanoparticles dispersed in conventional base fluids have attracted significant attention for their ability to enhance key thermophysical properties. Their improved thermal conductivity, heat capacity, and flow behavior make them promising candidates for a broad range of automotive applications, including engine cooling, brake systems, heat exchangers, and battery thermal management. This review provides a critical assessment of current nanofluid research within the automotive field, outlines their demonstrated benefits, discusses the challenges that still limit widespread adoption, and highlights areas where further investigation is needed to support their integration into next-generation vehicles.

The foundational work of Maxwell [1] first demonstrated that embedding solid particles in liquids could improve thermal conductivity, addressing the long-standing limitations of conventional heat-transfer fluids and motivating the search for new media suitable for compact or microscale heat exchangers. Achieving a stable, uniform dispersion of particles in liquids remained a major challenge for decades. This changed in 1995, when Choi and Eastman [2] introduced the term “nanofluid” to describe a new class of engineered fluids containing nanoparticles on the scale of a few nanometers. Since then, advances in nanotechnology have expanded the development and application of nanomaterials ultrafine solids with size-dependent behaviors distinct from their bulk counterparts across fields ranging from medicine and agriculture to industrial engineering.

When properly stabilized, nanofluids behave as colloidal systems in which the suspended nanoparticles significantly enhance heat-transfer performance [3-5]. This improvement contributes to greater energy efficiency and enables the design of smaller, lighter, and more effective heat-exchange equipment [6-11]. Recent studies focused on automotive systems further reinforce these advantages. For instance, Patel et al. [12] examined the use of nanofluids in radiator coolants, lubricants, and fuel systems, while Gülbüm et al. [13] reported meaningful reductions in radiator size and weight when high-performance nanofluids were used. Research on hybrid nanofluids—fluids containing two or more types of nanoparticles shows additional gains in thermal conductivity, stability, and overall heat-transfer effectiveness, making them particularly attractive for engine cooling and diesel-engine thermal management [14].

Despite these encouraging findings, several practical challenges remain. These include ensuring long-term dispersion stability, managing the increased pumping power associated with higher viscosity, addressing cost considerations, and understanding performance under real automotive operating conditions [15-17]. In parallel with these technical challenges, the economic viability of nanofluids has become increasingly relevant for their adoption in real automotive systems. Recent reports emphasize that nanoparticle costs, synthesis procedures, stabilization requirements, and system maintenance all contribute to the total lifecycle cost of nanofluid-based cooling or lubrication systems. While many formulations demonstrate clear thermal advantages, their practical implementation will depend on achieving cost-effective production routes and minimizing operational expenses without compromising reliability. Together, these issues underscore the need for continued targeted research.

Since the introduction of nanofluids, numerous studies have explored their potential to enhance heat-transfer processes across a wide range of systems [18-20]. Many of these investigations have shown that nanofluids improve convective heat transfer and offer measurable performance gains under both laminar and turbulent flow conditions [21-26]. As the demand for efficient heat transfer continues to grow, researchers have evaluated nanofluids in diverse applications such as electronic cooling [27], refrigeration systems [28], solar thermal collectors [29,30], and industrial cooling towers [31], with consistently promising results [32]. Conventional thermal fluids—water, oils, and ethylene/propylene glycol remain essential in engineering, yet their inherently low thermal conductivity limits their ability to meet rising performance requirements. Traditional enhancement strategies, including extended surfaces, surface vibration, and flow manipulation, have reached their practical limits. Consequently, efforts have shifted toward modifying the thermophysical properties of base fluids through the addition of high-conductivity solid particles, a strategy shown to significantly improve heat-transfer performance [33-38].

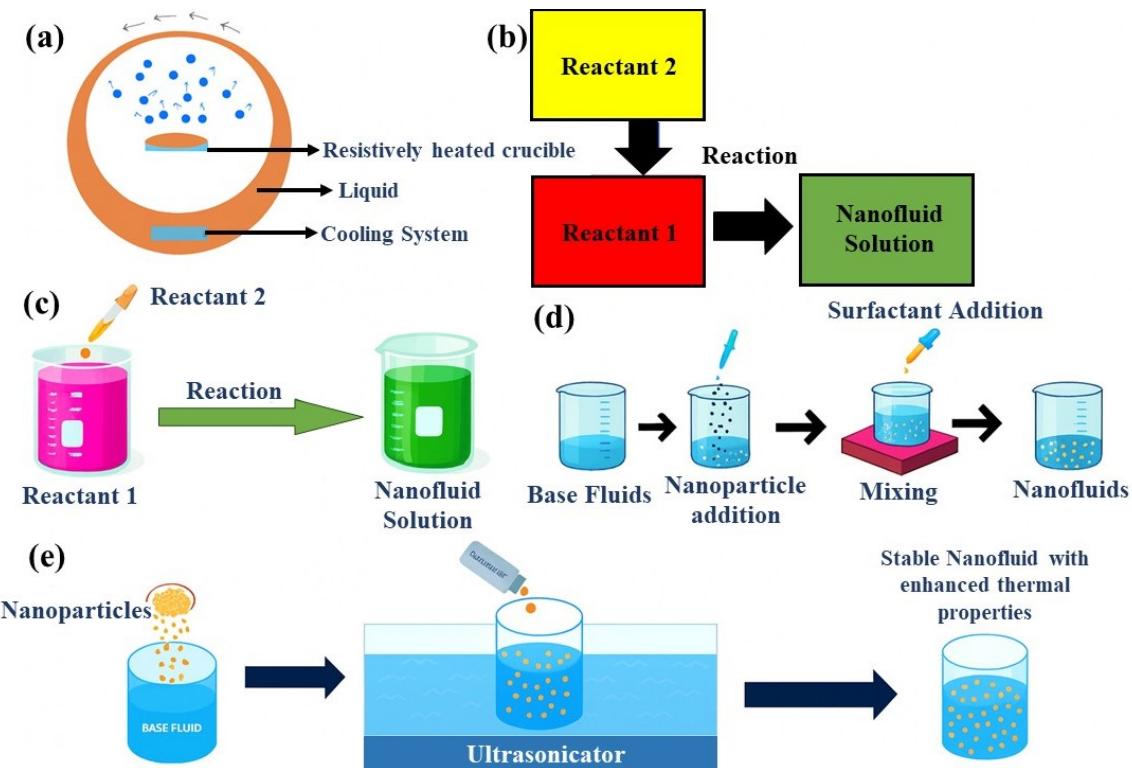
Although research on nanofluids has grown steadily, a complete and focused assessment of their role in automotive systems is still missing. Most earlier reviews looked at general heat-transfer applications or examined only one component at a time, which leaves important questions unanswered about how nanofluids perform across engine cooling, lubrication, fuel systems, and newer electric vehicle technologies. In this review, we draw on recent studies to bring these areas together and highlight emerging developments in electric vehicle thermal management, including battery cooling strategies, cold-plate designs, and the thermal control of power electronics. We also discuss advances in hybrid nanofluids that are being tailored to handle the higher heat loads found in modern automotive applications. By comparing these developments with the conclusions of earlier reviews, we show how the field has moved beyond basic thermophysical improvements toward application-driven design and performance optimization. The goal of this work is to connect these scientific advances with the practical challenges faced by today’s automotive industry—from reducing weight and emissions to improving energy efficiency and managing the thermal demands of next-generation powertrains. Through this approach, the review offers a clearer and more integrated picture of how nanofluids can contribute to more efficient and sustainable automotive technologies.

2. Nanomaterials for Nanofluid Development: Types and Applications

Nanofluids are advanced colloidal suspensions consisting of nanoparticles dispersed in a base fluid, with the particles typically smaller than 100 nm. The thermophysical behavior of nanofluids is governed by both the intrinsic properties of the base fluid and the characteristics of the dispersed nanoparticles. Key influencing factors include nanoparticle size, shape, concentration, synthesis route, and surface chemistry, as well as the compatibility between the nanoparticle and base fluid. Common base fluids used in nanofluid preparation include water, ethylene glycol, propylene glycol, and their binary mixtures, selected for their favorable heat-transfer characteristics and chemical compatibility [39-42]. These conventional fluids are well established in cooling and thermal systems but possess limited thermal conductivity. Incorporating nanoparticles with high surface area and superior conductivity into such fluids markedly enhances energy transport and overall thermal performance. Nanoparticles employed in nanofluid development can be broadly categorized into ceramic, metallic, and carbon-based types.

- Ceramic nanoparticles such as Al_2O_3 , TiO_2 , SiO_2 , SiC , ZnO , and Fe_3O_4 are widely studied due to their excellent thermal stability, resistance to oxidation, and good dispersion behavior in polar base fluids. They offer balanced improvements in both conductivity and chemical durability, making them suitable for long-term heat-transfer applications [43,44].
- Metallic nanoparticles including Cu, Al, Ag, Au, and Fe provide exceptional thermal conductivity and are capable of significantly enhancing convective heat transfer. However, their higher density, cost, and tendency to oxidize can limit large-scale use in closed-loop systems [45-47].
- Carbon-based nanoparticles such as carbon nanotubes (CNTs), graphene, graphene oxide (GO), and carbon black are increasingly popular for next-generation nanofluids. Their outstanding thermal conductivity, mechanical strength, and aspect ratio contribute to superior heat-transfer enhancement, although achieving stable dispersions without aggregation remains a major challenge [40,41,48].

To ensure homogeneous dispersion and prevent nanoparticle agglomeration, surfactants or stabilizing agents are typically incorporated into nanofluids. Typical stabilizers include ionic surfactants, such as Sodium Dodecyl Sulfate (SDS) and Cetyltrimethylammonium Bromide (CTAB), polymeric dispersants, and surface modifiers specifically tailored to the chemistry of the nanoparticles and the base fluid [43,45]. Additionally, physical techniques such as ultrasonication and pH control are often applied to enhance suspension stability. Stable dispersion is essential for maintaining consistent thermal conductivity, viscosity, and flow behavior—parameters critical for reliable performance in automotive cooling systems, heat exchangers, and other thermal management devices [46,48]. The effective performance of nanofluids depends on the careful selection of the base fluid, nanoparticle type, and stabilization approach. A comprehensive understanding of how these factors interact is essential for developing stable, efficient, and purpose-specific nanofluids suited to advanced applications such as automotive thermal systems and renewable-energy technologies [42,48].


2.1 Analysis and Characterization of $\text{Al}_2\text{O}_3/\text{TiO}_2$ Nanolubricants

Recent studies have widely examined $\text{Al}_2\text{O}_3/\text{TiO}_2$ -based nanolubricants for enhancing the thermal and tribological performance of automotive engine oils. In these studies, commercial synthetic oils, such as Castrol EDGE Professional A5 5W-30, are commonly employed as base lubricants to evaluate the effects of nanoparticle additives on thermo-oxidative stability and lubrication behavior [49,50]. The incorporation of TiO_2 and Al_2O_3 nanoparticles provides notable advantages due to their excellent tribological properties as solid lubricants and their ability to enhance heat dissipation through superior thermal conductivity. Moreover, both materials are cost-effective and are known to function as combustion catalysts that promote more complete and efficient fuel burning in internal combustion engines [49,50]. The TiO_2 (anatase) and Al_2O_3 (γ -phase) nanoparticles commonly utilized in nanolubricant formulations typically possess particle diameters in the range of 8-12 nm and exhibit the properties summarized in Table 1. Experimental findings generally indicate that particles within the 5-15 nm range provide the most effective rolling behavior while minimizing abrasive wear, whereas larger nanoparticles (20-30 nm and above) tend to increase surface scratching and reduce overall tribological performance. These differences in density, surface area, and thermal conductivity significantly influence the overall performance and dispersion stability of hybrid nanolubricants. Researchers have noted that van der Waals interactions among nanoparticles can induce agglomeration, which negatively affects lubrication efficiency and long-term stability [49]. Hence, proper dispersion and stabilization techniques remain essential for maintaining uniform suspension quality. Hybrid $\text{Al}_2\text{O}_3/\text{TiO}_2$ nanolubricants are generally prepared by dispersing small fractions of nanoparticles commonly around 0.05 wt% Al_2O_3 and 0.05 wt% TiO_2 into a base oil along with surfactants such as oleic acid, which act as dispersants to improve particle compatibility and prevent sedimentation [50]. Oleic acid is widely adopted because it provides effective surface modification and steric stabilization without altering the viscosity or chemical integrity of the base oil. Studies have shown that optimized nanolubricant formulations containing approximately 0.1 wt% nano-additives can reduce frictional power losses by up to 53% and lower fuel consumption by nearly 16%, demonstrating their potential for enhancing energy efficiency and component durability in engines [50].

Table 1. Characteristics of TiO_2 and Al_2O_3 nanomaterials.

Property	TiO_2	Al_2O_3
True density	4.23 g/cm ³	3.70 g/cm ³
Specific surface area	77.37 m ² /g	130 m ² /g
Thermal conductivity	8.4 W/m·K	40 W/m·K
Specific heat capacity	697 J/kg·K	773 J/kg·K

To assess the structure, composition, and dispersion quality of $\text{Al}_2\text{O}_3/\text{TiO}_2$ nanolubricants, researchers commonly employ several complementary analytical and characterization techniques. X-ray diffraction (XRD) is used to verify the crystalline phases of TiO_2 and Al_2O_3 , ensuring that no phase transformation occurs during preparation. Fourier transform infrared spectroscopy (FTIR) helps identify surface functional groups and confirms the chemical interaction between nanoparticles, surfactants, and the base oil. Scanning electron microscopy (SEM) or transmission electron microscopy (TEM) provides visual evidence of nanoparticle morphology and agglomeration behavior, while zeta potential analysis quantifies the electrostatic stability of the suspension. In practical terms, absolute zeta potential values of approximately ± 30 mV or higher are generally regarded as sufficient to maintain long-term colloidal stability, even under the elevated temperatures and shear stresses present in engine lubrication environments. Studies also note that surfactants such as oleic acid may undergo gradual degradation through oxidative breakdown or partial desorption from nanoparticle surfaces during extended operation, which can reduce dispersion stability over time.

Figure 1. Schematic representation of the preparation and stabilization process of based nanolubricants.

Collectively, these techniques have been instrumental in correlating microstructural features with the improved thermal conductivity, viscosity behavior, and frictional performance of $\text{Al}_2\text{O}_3/\text{TiO}_2$ nanolubricants [50]. Although this review does not provide detailed surface analyses, previous studies employing techniques such as X-ray Photoelectron Spectroscopy (XPS) and Energy-Dispersive Spectroscopy (EDS) have offered crucial evidence of tribochemical film formation, supporting the proposed lubrication mechanisms reported for $\text{Al}_2\text{O}_3/\text{TiO}_2$ nanolubricants. The commonly reported formulation of approximately 0.05 wt% Al_2O_3 and 0.05 wt% TiO_2 reflects an optimized balance between thermal and tribological performance. Al_2O_3 contributes primarily to enhancing thermal conductivity because of its higher intrinsic conductivity and larger specific surface area, while TiO_2 is more effective in boundary lubrication due to its chemical stability and ability to form protective surface films under load. Using both nanoparticles in equal proportions helps combine these complementary effects while avoiding excessive particle loading, which could increase viscosity or promote agglomeration. This ratio has therefore been adopted in several studies as a practical compromise

that supports both heat dissipation and wear reduction in engine lubrication systems. As illustrated schematically in Figure 1, the preparation and stabilization process typically involve surfactant addition, mechanical stirring, and ultrasonic dispersion to obtain a homogeneous and stable hybrid nanolubricant formulation suitable for engine applications.

A cross-study examination shows recurring patterns: (i) particle size and morphology matter nanoparticles \sim 10-100 nm generally give the best balance of surface reactivity and film formation, (ii) loading follows a non-linear trend where low-to-moderate concentrations typically maximize benefit while very high concentrations risk aggregation and abrasive wear, and (iii) stabilization is decisive chemical functionalization or strongly adsorbed layers produce the most reliable long-term stability compared to surfactants or purely mechanical dispersion. Thermal-property gains (thermal conductivity) are often modest and must be balanced against viscosity increases that can harm flow and pumping performance.

Sources of contradiction and open questions. Where studies disagree, three factors commonly explain the difference: short vs. long test durations, undisclosed or differing base-oil additive packages which interact with nanoparticles, and differences between simple bench tribology and realistic engine-condition tests. To help readers interpret the literature we suggest that authors clearly report particle size distribution, loading units, stabilization method, base oil composition, and test protocol.

Studies consistently report that nanoscale additives outperform micron-sized ones. For instance, nano-WS₂ additives reduced friction \sim 26% more than micro-sized WS₂. Nanoparticles (<100 nm) can enter asperity contacts and form low-friction tribofilms much more easily than bulk powders. In fact, \sim 5 nm Cu NPs gave significantly better friction reduction than larger Cu particles in base oil. In general, additives in the 10-100 nm range tend to yield the best friction/wear performance. TiO₂ and ZnO NPs greatly improve lubrication, whereas larger particles often fail to enter the contact zone [51].

Multiple reports emphasize that chemical functionalization dramatically improves nanolubricant stability. Aithal et al. (2025) [51] show that oleic-acid/oleylamine (OA/OAm) ligand coatings on CuO NPs reduce sedimentation by \sim 75% compared to uncoated CuO. This steric coating maintained dispersion under shear, leading to 44-60% lower friction and 29-64% lower wear vs. raw CuO NPs. In contrast, simple surfactant-based dispersions or mechanical mixing tend to fail over time. Excess free surfactant can raise viscosity and friction, while too little surfactant lets NPs aggregate. Similarly, a tribology review reports that TiO₂ and ZnO NPs often suffer from agglomeration in oil-based media, leading to inconsistent performance unless properly surface functionalized or dispersed using stabilizers.

3. Methods of Nanofluid Preparation

Nanofluids are colloidal suspensions of solid nanoparticles dispersed in base fluids such as water, ethylene glycol, or oils. These nanoparticles, typically metallic or non-metallic, exhibit high thermal conductivity and enhance the overall thermophysical properties of the base fluid. Two primary methods are employed for nanofluid preparation: the one-step and two-step techniques, each with distinct advantages and challenges. The two-step method is the most widely adopted due to its simplicity, scalability, and cost-effectiveness. In this approach, nanoparticles are first synthesized using physical or chemical methods such as sol-gel, hydrothermal, chemical precipitation, or mechanical milling. In the second stage, the nanoparticles are dispersed into the base fluid through magnetic stirring, high-shear mixing, or ultrasonication often for several hours to ensure homogeneous suspension. Although this method can lead to particle agglomeration due to high surface energy, the addition of surfactants or dispersants helps maintain colloidal stability. Its adaptability makes it particularly suitable for automotive applications, where fluids can be formulated or reconditioned on-site to meet manufacturer specifications [52-57]. Conversely, the one-step method integrates nanoparticle synthesis and dispersion into a single process. A representative example is the Submerged Arc Nanoparticle Synthesis System (SANSS), in which nanoparticles are generated directly within the base fluid, eliminating the need for drying, handling, or transportation [53]. This approach minimizes oxidation and aggregation, producing highly stable nanofluids with improved uniformity. However, it faces limitations such as residual precursor contamination, high production cost, and poor scalability. Trace precursor contamination from one-step systems such as SANSS can have important implications for long-term corrosion behavior in automotive cooling circuits. Even low residual levels of metal salts, unreacted ions, or synthesis by-products may alter the pH or ionic strength of the nanofluid over time, increasing the susceptibility of aluminum, brass, and copper components to localized corrosion. Aluminum alloys are particularly sensitive to chloride and sulfate residues, while brass and copper may undergo accelerated dezincification or pitting in the presence of reactive anions. Several studies note that such contaminants can weaken the protective oxide layers on these metals, especially under high-temperature, high-flow operating conditions. These effects highlight the need for careful purification or post-processing of SANSS-derived nanofluids before they are considered for automotive use. These issues hinder its large-scale industrial implementation, especially for automotive lubricants and coolants, where purity and formulation consistency are critical [54,55,58].

Recent research (2023-2025) continues to refine both techniques. Advanced hybrid methods now combine ultrasonic dispersion with surface functionalization to improve nanoparticle stability and heat-transfer performance. Studies also highlight that optimizing particle concentration (typically below 1 vol%) and ensuring surface compatibility are

essential to prevent viscosity increase or sedimentation. Emerging work in the field focuses on developing continuous-flow reactors and greener synthesis approaches to produce nanofluids with consistent properties while reducing environmental and economic costs [59-61].

A concise summary of selected studies highlighting recent developments in nanofluid preparation methods is presented in Table 2. These works illustrate the progression from conventional two-step dispersion to more advanced hybrid and surface-functionalized techniques designed to enhance stability, reproducibility, and performance in diverse base fluids. In general, the selection of a preparation technique depends on the target application, nanoparticle type, and production scale. Recent reports indicate that two-step processing is currently the most practical route for industrial-scale production, with pilot facilities capable of generating between 500 and 2,000 liters per batch depending on the nanoparticle system. Estimated production costs for automotive-grade nanofluids prepared via this method range from 8 to 18 USD per liter, influenced by nanoparticle pricing, surfactant usage, and energy demand during dispersion. For context, conventional ethylene glycol coolant typically costs less than 4 USD per liter, highlighting the economic gap that still limits large-scale adoption. Nevertheless, ongoing developments in continuous-flow dispersion, bulk nanoparticle synthesis, and greener surfactant systems are expected to reduce costs and improve the viability of nanofluid production for automotive applications. For automotive systems, the two-step approach remains the preferred choice because it provides an optimal balance between performance, stability, and cost efficiency while supporting the standardization required for industrial formulation and servicing.

Table 2. Summary of selected studies on nanofluid preparation methods.

Nanofluid System	Preparation Method	Base Fluid	Key Findings / Remarks	Ref.
Hybrid Al ₂ O ₃ -TiO ₂ /oil	Two-step	Engine oil	Improved lubrication and reduced frictional losses in engines.	[52]
Ag nanofluid	One-step (SANSS)	Ethylene glycol	Direct synthesis produced stable dispersion without oxidation.	[53]
Al ₂ O ₃ /water	Two-step	Water	Demonstrated enhanced heat transfer with prolonged sonication.	[54]
Cu/EG	One-step (vapor condensation)	Ethylene glycol	Reported high thermal conductivity; limited scalability.	[55]
Various nanofluids	Two-step	Water, EG	Discussed challenges in laboratory-scale to industrial scale-up.	[56]
Hybrid nanofluids	Two-step+surfactant	EG/water mixture	Reported improved thermal stability and reduced sedimentation.	[57]
Single & hybrid nanofluids	Two-step	Various	Reviewed methods for enhanced reproducibility and stabilization.	[58]
Al ₂ O ₃ and nanofluids	CuO Two-step	Water	Identified ultrasonication as key factor in maintaining stability.	[59]
Functionalized nanofluids	Hybrid method	Water-based	Highlighted eco-friendly synthesis and reduced agglomeration.	[60]
Hybrid nanofluids	Two-step+surface modification	Oil, EG	Demonstrated high thermal conductivity with improved dispersion.	[61]

3.1 Greener Synthesis Methods and Continuous-Flow Production

Greener synthesis approaches have gained increasing attention in recent nanofluid research, reflecting the need for environmentally responsible production routes. Several recent studies report the use of plant extracts, biodegradable surfactants, and low-toxicity reducing agents to fabricate metal oxide and hybrid nanoparticles with reduced chemical waste and lower energy demand. Green-reduced Al₂O₃, ZnO, and Ag nanoparticles produced using botanical extracts such as neem, aloe vera, and tea polyphenols have shown promising stability and thermophysical performance when dispersed in water or glycals. These bio-assisted methods eliminate hazardous by-products and offer better control over particle size, which is essential for maintaining long-term stability in automotive cooling and lubrication systems. Moreover, the use of natural dispersants such as gum arabic or cellulose derivatives has demonstrated improved steric stabilization, further supporting their suitability for large-scale applications. In parallel, continuous-flow reactor technologies have emerged as a scalable alternative to traditional batch synthesis. Microreactor and milli-reactor systems allow precise control of reaction time, temperature, and mixing conditions, enabling consistent nanoparticle size distribution and reducing the risk of agglomeration. Recent advancements include modular continuous-flow platforms capable of producing metal oxide, carbon-based, and hybrid nanoparticles in liter-per-hour quantities with high reproducibility—an important requirement for automotive-grade nanofluids. These systems also offer advantages in

process safety, energy efficiency, and real-time monitoring, making them suitable candidates for industrial adoption. As the automotive sector moves toward more sustainable and standardized coolant and lubricant formulations, continuous-flow synthesis provides a promising pathway for scaling nanofluid production while maintaining uniform quality and minimizing environmental impact.

4. Properties of Nanofluid

The development of nanofluids is largely driven by the goal of enhancing the thermophysical properties of conventional base fluids particularly thermal conductivity to achieve higher heat transfer efficiency. Through careful modification of these properties, nanofluids can be tailored to meet specific performance requirements in various engineering systems [62,63]. Extensive theoretical and experimental investigations have been conducted to examine their key properties, most notably thermal conductivity, viscosity, and specific heat capacity, which are fundamental to the effective utilization of nanofluids in energy and automotive applications.

A wide range of nanoparticles has been explored, including metal oxides (Al_2O_3 , CuO , TiO_2), metals (Ag, Cu), magnetic materials (Fe_3O_4), and carbon-based nanostructures such as multi-walled carbon nanotubes (MWCNTs) and graphene [64-71]. Each type contributes differently to enhancing the thermal behavior and flow characteristics of the base fluid, depending on particle size, morphology, and concentration.

4.1 Thermal Conductivity

Nanofluids have attracted significant attention as advanced heat transfer media, particularly for automotive cooling and lubrication systems, due to their superior thermal conductivity compared with conventional fluids. The enhancement in thermal conductivity is influenced by several factors, including nanoparticle type, volume fraction, particle size and shape, base fluid, temperature, and dispersion stability [65-67]. Experimental findings consistently indicate that increasing nanoparticle concentration enhances the effective thermal conductivity of the fluid. For instance, Mohammadi et al. [65] and Pang [72] reported that Al_2O_3 and CuO nanofluids based on engine oil exhibited enhancements of approximately 5-8% at 2 vol% and 10.4% at 3.5 vol% for Al_2O_3 coolant systems, respectively. Similarly, Kole and Dey [73] observed that aluminum nitride nanoparticles produced a 75.2% improvement at 3 wt%, confirming the strong dependence of thermal conductivity on particle loading and composition. Other investigations such as those by Ahmed et al. [66], Moghaieb et al. [68], and Moldoveanu et al. [67] have demonstrated similar enhancements across different nanofluid systems. These studies show that nanoparticle material, morphology, and the quality of dispersion play crucial roles in improving thermal performance.

The enhancement of thermal conductivity in nanofluids can be explained using several classical models. The Maxwell model is one of the earliest and most widely used formulations to estimate the effective thermal conductivity of solid-liquid mixtures. It considers the nanoparticle concentration (ϕ) as the primary factor influencing heat conduction, and is expressed as:

$$k_{nf} = k_{bf} \left(\frac{(k_p + 2k_{bf} + 2\phi(k_p - k_{bf}))}{(k_p + 2k_{bf} - \phi(k_p - k_{bf}))} \right) \quad (1)$$

where k_{nf} is the thermal conductivity of the nanofluid, k_{bf} is the thermal conductivity of the base fluid, k_p is the thermal conductivity of the nanoparticle, and ϕ is the particle volume fraction.

While the Maxwell model effectively predicts the behavior of spherical nanoparticles in dilute suspensions, it does not account for particle shape. The Hamilton-Crosser model extends the Maxwell approach by introducing a shape factor (n) that considers the geometry of nanoparticles [59]. The model is expressed as:

$$k_{nf} = k_{bf} \left(\frac{(k_p + (n-1)k_{bf} - (n-1)\phi(k_{bf} - k_p))}{(k_p + (n-1)k_{bf} + \phi(k_{bf} - k_p))} \right) \quad (2)$$

where n is defined as:

$$n = \frac{3}{\psi} \quad (3)$$

Here, ψ (sphericity) represents the ratio of the surface area of a sphere (having the same volume as the particle) to the actual surface area of the nanoparticle. A smaller value of ψ (less spherical shape) corresponds to a higher n, indicating greater thermal enhancement due to the increased surface contact between the particles and the fluid. These models provide theoretical validation for the observed experimental trends and confirm that both particle concentration and shape significantly influence the thermal conductivity of nanofluids. However, real systems often deviate from these predictions due to factors such as particle aggregation, interfacial resistance, and non-homogeneous dispersion, which are not fully captured in classical formulations. Classical models such as Maxwell and Hamilton-Crosser provide a useful starting point, but they inherently assume steady-state conduction and do not capture the temperature-dependent

variations in thermal conductivity that are commonly reported in nanofluid experiments. In practice, the effective thermal conductivity of nanofluids increases with temperature due to enhanced Brownian motion, reduced fluid viscosity, and stronger micro-convection effects none of which are represented in these early models. More advanced approaches now incorporate mechanisms such as Brownian diffusion, thermophoresis, interfacial liquid layering, and particle-fluid slip, which become particularly important in the typical automotive operating range of 80-130 °C. These improved models offer better agreement with experimental data and provide a more realistic basis for predicting nanofluid behavior in high-temperature engine cooling and lubrication systems. Recent studies incorporating surface modification and hybrid nanoparticle systems have shown better agreement between theoretical predictions and experimental data [74-78]. Advanced computational models now combine molecular dynamics simulations and experimental fitting to capture the combined effects of Brownian motion, thermophoresis, and interfacial layering on effective thermal conductivity. These developments further support the application of nanofluids in thermal management systems, where optimizing particle design and dispersion remains central to maximizing performance.

4.2 Viscosity

Viscosity is a fundamental parameter governing the convective heat transfer and flow behavior of fluids. Even slight variations in viscosity can substantially affect thermal transport and pumping performance in engineering systems. For nanofluids, viscosity is primarily influenced by nanoparticle concentration, particle size, temperature, and dispersion stability. Mathematically, several models have been developed to describe the viscosity behavior of nanofluids. The classical Einstein model (Equation 4) provides a reliable estimation for dilute suspensions, assuming spherical particles and negligible interparticle interactions [77]:

$$\eta_{nf} = \eta_o(1 + 2.5\phi) \quad (4)$$

where η represents the viscosity of the nanofluid, η_o is the viscosity of the base fluid, and ϕ is the nanoparticle volume fraction. However, the Einstein model becomes less accurate at higher concentrations where particle interactions are no longer negligible. To account for this, Kunitz (1926) proposed an empirical correlation that more accurately represents the viscosity of concentrated suspensions up to approximately 50% solid volume fraction [79]:

$$\eta_{nf} = \eta_o(1+0.5\phi)/(1-\phi)^4 \quad (5)$$

This relationship better predicts the non-linear increase in viscosity with concentration and is often used to approximate nanofluid behavior in dense dispersions.

The rheological properties of nanofluids specifically their resistance to flow is influenced by shear forces acting between moving surfaces or within confined flow channels. These forces alter the internal friction of the fluid, making viscosity a key factor in assessing its thermal and mechanical performance. Experimental studies, such as those by Pak and Cho [80], have shown that viscosity can increase dramatically with nanoparticle addition, reporting up to a two-hundredfold increase for γ -Al₂O₃/water nanofluids at higher concentrations. Increased nanoparticle agglomeration typically leads to higher viscosity, resulting in larger pressure drops and greater pumping power requirements. This negatively impacts the overall energy efficiency of systems employing nanofluids. Furthermore, viscosity is strongly temperature-dependent generally decreasing with rising temperature though at elevated particle loadings, this relationship can become complex.

While base fluids such as water, ethylene glycol, and oil usually exhibit Newtonian flow behavior, the introduction of nanoparticles can induce non-Newtonian characteristics. This transition is often attributed to the formation of a nanolayer around the particles, which modifies the effective viscosity and shear response of the suspension. As described by Bhanvase et al. [19], this nanolayer effect alters interfacial friction and flow uniformity, particularly in systems operating under variable shear conditions. Overall, while the incorporation of nanoparticles enhances heat transfer capability, it also increases viscosity, which may offset performance gains if not optimized. Achieving the right balance between thermal conductivity enhancement and viscosity control remains a critical design consideration in developing nanofluids for automotive and industrial thermal systems. To better quantify this trade-off, many studies use the Performance Evaluation Criterion (PEC), which compares the relative increase in heat-transfer coefficient to the increase in frictional or pumping power. A PEC value greater than 1 indicates that the thermal benefits outweigh the hydraulic penalty, while values below 1 suggest that viscosity-related losses dominate. Reported PEC values for common nanofluids such as Al₂O₃/water and CuO/EG vary widely depending on concentration, flow regime, and temperature, underscoring the need to optimize nanoparticle loading rather than maximizing it. Incorporating PEC-based assessments helps determine whether a nanofluid formulation provides a genuine net energy advantage in automotive cooling or lubrication systems.

The models summarized in Table 3 provide useful frameworks for estimating the viscosity of nanofluids under different conditions. However, most classical correlations were originally developed for micron-scale suspensions and may not fully capture the effects of nanoscale interactions, temperature dependence, or non-Newtonian behavior. Recent studies

highlight that viscosity can vary significantly with nanoparticle surface modification, surfactant type, and hybrid composition. Therefore, advanced models integrating experimental data with empirical or machine learning approaches are being developed to better predict the rheological behavior of nanofluids in real operating environments.

Table 3. Summary of classical viscosity models for particle-laden fluids, including their mathematical forms, applicable concentration ranges, and key assumptions relevant to nanofluid behavior.

Model	Equation	Applicable Range / Assumptions	Key Features / Remarks	Ref.
Einstein (1906)	$\eta_n f = \eta_0 (1 + 2.5\phi)$	Valid for dilute suspensions ($\phi < 0.02$); spherical, non-interacting particles	Linear relation between viscosity and volume fraction; simple and widely used [78] for low concentrations	—
Kunitz (1926)	$\eta_n f = \eta_0 (1 + 0.5\phi)/(1 - \phi)^4$	Moderate to high particle concentrations ($\phi \leq 0.5$)	Accounts for non-linear increase in viscosity with concentration; empirical [79] correlation	—
Batchelor (1977)	$\eta_n f = \eta_0 (1 + 2.5\phi + 6.2\phi^2)$	Low-to-moderate concentrations	Considers hydrodynamic interactions among particles	—
Brinkman (1952)	$\eta_n f = \eta_0 / (1 - \phi)^2$	Moderate ϕ (up to 0.4)	Extends Einstein's model by including crowding effects	—
Krieger–Dougherty (1959)	$\eta_n f = \eta_0 (1 - \phi/\phi_m)^{[-[\eta]\phi_m]}$	Concentrated suspensions; ϕ_m = maximum packing fraction	Empirical model for high concentrations and complex particle shapes	—
Thomas (1965)	$\eta_n f = \eta_0 (1 + 2.5\phi + 10.05\phi^2 + 0.00273e^{(16.6\phi)})$	Broad concentration range	Fits experimental data for suspensions with strong interparticle forces	—

Recent studies [81] provide specific values for property enhancements in nanofluids, which vary widely with particle type and concentration. For example, metal-oxide nanoparticles (Al_2O_3 , TiO_2 , ZnO , CuO) typically give moderate conductivity gains $\sim 5\text{-}30\%$ above the base fluid at vol% of a few percent. By contrast, highly conductive particles can yield much larger effects: Cu nanoparticles $\sim 75\text{-}100$ nm in water produced $\sim 23.8\%$ higher thermal conductivity at only 0.1% volume fraction. Noble metals are even more potent: Ag nanoparticles ~ 96 nm achieved $\sim 20.8\%$ increase in water at an extremely low 0.000017% vol. Hybrid fluids with two or more particle types can amplify this further—for instance a ternary hybrid (MWCNT/CuO/SiO_2) gave a $\sim 37.1\%$ conductivity boost at ~ 4 vol%, and a CuO-MgO binary system showed a 29.6% higher conductivity than single- CuO fluid at 0.5% total concentration [82]. Carbon-based nanofluids (CNTs, graphene) often exhibit some of the largest enhancements, though those data depend strongly on dispersion and surfactants. In contrast, all these conductivity gains typically come with small or negative changes in specific heat capacity. In general, adding solid particles with lower heat capacity than water tends to reduce the mixture's C_p : experimental data show that without special additives, the specific heat of Al_2O_3 - or TiO_2 -water nanofluids decreases as particle fraction increases.

Improved conductivity often comes at the cost of higher viscosity, which penalizes pumping power. Viscosity generally rises rapidly with particle concentration far more strongly than thermal conductivity leading to increased flow resistance. NP concentration increases, NF viscosity also increases, leading to flow resistance, so that greater viscosity increases power requirements of the pumping system and pressure losses. This trade-off is echoed in recent studies: for instance, a heat-exchanger study with nanofluids found that raising the volume fraction gave diminishing returns, reducing coolant outlet temperature substantially by $\sim 44.6\%$ at optimum but also reducing a composite efficiency index by 5.8–11.7% due to viscosity-related losses [83]. Conversely, carefully optimized nanofluids can still save pumping energy when their heat transfer gain outweighs the viscosity penalty. Razavi et al. [84] reported that a 5 wt% CuO /water nanofluid at 80 °C had 43.3% higher conductivity and achieved a 17.1% reduction in heater power consumption compared to water. Influence of key parameters on nanofluid properties:

Increasing NP concentration generally increases thermal conductivity (often nonlinearly) but also strongly raises viscosity. The balance depends on particle type and size. For example, small increases in loading ($\approx 0.5\text{-}1$ vol%) often yield significant conductivity gains with modest viscosity rise, while very high loadings (> 5 vol%) can dramatically increase viscosity with only marginal conductivity benefit. The cited literature emphasizes that gains in conductivity usually require higher pumping power due to this viscosity penalty.

Most nanofluids show increasing thermal conductivity and decreasing viscosity at higher temperatures. This is because base fluid conductivity usually rises with T , and viscosity falls. We now note that temperature is commonly included in conductivity models [85].

The stability of the nanoparticle suspension is critical. Over time, agglomeration or sedimentation can degrade thermal performance. Recent reviews [86] stress that agglomeration, long-term stability, and compatibility with the fluid are concerns that need to be addressed for reliable operation.

The thermophysical properties of the base liquid strongly influence the effect of adding nanoparticles. Water-based nanofluids start with higher baseline conductivity and heat capacity, so absolute gains in $\text{W}/\text{m}\cdot\text{K}$ are often larger in water than in oils or glycols at the same NP loading. Conversely, adding NPs to a low-conductivity fluid can yield larger relative improvements. Predictive models explicitly use the base-fluid thermal conductivity and viscosity as inputs. While our review cites examples in both water and ethylene glycol media, we now emphasize that comparison of studies must account for the base fluid properties.

For thermal conductivity, the classic Maxwell and Hamilton-Crosser equations and their extensions are widely used as baselines. These models incorporate the conductivities of the base fluid and particles, and sometimes particle shape (Hamilton-Crosser). More recent modifications include effects of particle clustering, interfacial nanolayers, and Brownian motion (Wasp, Kleinstreuer, Xuan models). We also mention emerging machine-learning models, which have been applied to predict conductivity and viscosity from large experimental datasets. For viscosity, the Einstein model for dilute suspensions and its extensions (Brinkman, Mooney, Krieger-Dougherty) remain reference points. These models often under-predict the steep viscosity increases seen experimentally, so empirical correlations or neural-network models are often used instead. Our revised text now cites key examples of both analytical formulas and data-driven models.

5. Effect of Nanoparticles on Tribological Properties of Fluids

Friction and wear are critical factors that contribute to energy loss, component failure, and reduced operational efficiency in mechanical and industrial systems. To mitigate these effects, lubricants are employed to minimize surface contact and facilitate smoother relative motion between components. Conventional lubricants are often formulated with chemical additives designed to enhance anti-wear, anti-oxidation, and load-carrying capabilities [81]. In recent years, nanoparticles have emerged as advanced lubricant additives capable of significantly improving the tribological performance of base fluids. Their small size, large surface area, and unique mechanical properties allow them to interact effectively with surface asperities and modify the lubrication regime. Studies have shown that incorporating nanoparticles into lubricants can reduce the coefficient of friction and wear rate, leading to improved energy efficiency and component longevity [82-90]. The primary cause of friction is the mechanical interlocking and adhesion of rough surface asperities during contact. Nanoparticles alleviate this effect by filling microcavities and surface irregularities, creating a thin protective film that separates the contacting surfaces. This film reduces direct metal-to-metal interaction, thus minimizing adhesive wear and frictional heating. Moreover, some nanoparticles act as rolling elements or nano ball bearings, forming a dynamic layer that facilitates smoother sliding motion and lowers shear resistance [83]. In addition to their mechanical role, nanoparticles can also promote the formation of tribochemical films through surface reactions under high pressure and temperature conditions. These protective layers enhance surface hardness and reduce material transfer, further improving the durability of lubricated interfaces. Among various nanomaterials, TiO_2 , Al_2O_3 , CuO , graphene, and MoS_2 are among the most widely studied due to their excellent load-bearing capacity, stability, and ability to withstand high operating temperatures.

6. Role of Nanofluids in Automotive Engine Systems

Nanofluids, owing to their unique thermal, chemical, and tribological properties, have become increasingly relevant in modern automotive systems. Their ability to enhance heat transfer, improve lubrication, and optimize fuel combustion makes them promising candidates for next-generation vehicle technologies. In automotive applications, nanofluids are primarily employed as fuel additives, lubricant enhancers, and heat transfer media in cooling and transmission systems. Beyond performance gains, their adoption also supports environmental objectives by improving combustion efficiency and reducing harmful emissions [84]. The addition of nanoparticles to conventional fuels such as diesel or gasoline has been shown to enhance combustion efficiency and engine performance. Nanoparticles function as oxygenated catalysts, promoting more complete fuel oxidation and shortening ignition delay, which collectively improve both power output and emission characteristics. For example, Elkellawy et al. [87] investigated $\text{Mn}(\text{EIN})_4(\text{NCS})_2$ nanoparticles (≈ 15 nm) dispersed in a diesel-biodiesel blend and observed a 20% increase in brake thermal efficiency, along with reductions of 60% and 62% in CO and HC emissions, respectively. In a related study, Elkellawy et al. [88] used AgSCN nanoparticles as a fuel additive and found that a 400 ppm concentration substantially improved combustion performance and emission quality. These findings collectively highlight the catalytic and oxygen-enrichment roles of nanoparticles in promoting cleaner and more efficient combustion processes. To evaluate the economic feasibility of nanofluid applications, researchers have introduced the Price Performance Parameter (PPP), which provides a comparative metric of thermal conductivity enhancement relative to cost. The PPP is defined as:

$$\text{price performance parameter} = \frac{\frac{k_{nf}}{k_{bf}}}{\text{cost of nanofluid per liter}} \times 1000 \quad (6)$$

where k_{nf} and k_{bf} are the thermal conductivities of the nanofluid and base fluid, respectively [89]. Alirezaei et al. [91] examined Fe-EG and MgO-EG nanofluids with varying particle sizes and reported that MgO-based nanofluids offered superior economic performance due to their lower cost and higher thermal enhancement. Similarly, Esfe et al. [92] investigated single-walled carbon nanotube (SWCNT) and Fe_3O_4 hybrid nanofluids in ethylene glycol and concluded that the hybrid combination achieved a better PPP than either monofluid alone. Mukherjee et al. [93] experimentally evaluated Al_2O_3 -water nanofluids and observed a tenfold increase in PPP as nanoparticle concentration increased from 0.01% to 1%, emphasizing that economic optimization must balance concentration, cost, and thermal performance. In addition to fuel systems, nanofluids have shown strong potential as coolants in automotive thermal management. Kulkarni et al. [94] used Al_2O_3 nanoparticles in a 50:50 water-ethylene glycol mixture to enhance the performance of diesel-electric generator cooling systems. Their results indicated a 3% increase in heat exchanger efficiency, although cogeneration efficiency slightly decreased by 0.92% at a 6 vol% concentration. Naraki et al. [95] further demonstrated that CuO-water nanofluids increased the heat transfer coefficient by 8% in a car radiator at low nanoparticle concentrations. Subsequent experimental studies confirmed even greater improvements. Chavan and Pise [96] reported a 40–45% enhancement in radiator heat transfer coefficient using Al_2O_3 -water nanofluids at 1 vol%, while Chougule and Sahu [97] observed enhancements of 52.03% and 90.76% for Al_2O_3 water and CNT-water nanofluids, respectively, at the same concentration. Similarly, Hussein et al. [98] examined SiO_2 -water and TiO_2 -water nanofluids and found substantial improvements in cooling efficiency, demonstrating their suitability for high-performance automotive cooling systems. Overall, nanofluids have proven effective in improving the thermal, combustion, and tribological performance of automotive engines. However, large-scale commercialization depends on addressing challenges related to long-term stability, cost optimization, and potential material compatibility issues. Future research should emphasize multi-objective optimization, integrating thermophysical, economic, and environmental factors to enable the practical deployment of nanofluids in automotive and hybrid powertrain systems.

The studies summarized in Table 4 collectively demonstrate the versatility of nanofluids in enhancing automotive energy systems. Improvements in heat transfer, fuel combustion, and tribological behavior underscore their potential to reduce fuel consumption and emissions while improving thermal management efficiency. However, economic viability—often quantified through the Price Performance Parameter—remains a central consideration for industrial adoption. Achieving a balance between cost, performance, and long-term stability will be key for scaling nanofluid technologies in commercial vehicles and hybrid powertrains.

Table 4. Summary of key studies on nanofluid applications in automotive engine systems.

Nanoparticle / Additive	Base Fluid / Application	Main Findings	Ref.
$\text{Mn}(\text{EIN})_4(\text{NCS})_2$	Diesel–biodiesel blend	20% ↑ brake thermal efficiency; 60–62% ↓ CO and HC emissions	[87]
AgSCN	Diesel–biodiesel blend	400 ppm improved combustion, emissions, and performance	[89]
Fe, MgO	Ethylene glycol	MgO–EG nanofluid showed better cost-effectiveness based on PPP	[91]
SWCNT, Fe_3O_4	Ethylene glycol	SWCNT– Fe_3O_4 hybrid nanofluid had superior PPP and stability	[92]
Al_2O_3	Water	PPP increased tenfold as concentration rose from 0.01% → 1%	[93]
Al_2O_3	50:50 Water–EG	3% ↑ heat exchanger efficiency; slight (0.92%) ↓ in cogeneration	[94]
CuO	Water	8% ↑ overall heat transfer coefficient in car radiator	[95]
Al_2O_3	Water	40–45% ↑ radiator heat transfer coefficient at 1 vol%	[96]
Al_2O_3 , CNT	Water	52.03% ↑ for Al_2O_3 –water; 90.76% ↑ for CNT–water nanofluid	[97]
SiO_2 , TiO_2	Water	Enhanced radiator cooling efficiency and heat transfer	[98]

7. Nanofluid as Engine Fuel

The application of nanofluids as fuel additives has gained increasing attention due to their ability to enhance combustion characteristics, improve fuel economy, and reduce emissions. When dispersed in conventional or biodiesel fuels, nanoparticles act as catalysts that promote better atomization, faster oxidation, and more complete combustion. The resulting effects include improved brake thermal efficiency (BTE), reduced brake specific fuel consumption (BSFC), and lower concentrations of carbon monoxide (CO) and unburned hydrocarbons (HC). Devarajan et al. [99] investigated the influence of Ag_2O nanoparticles blended with neem oil biodiesel at concentrations of 5 ppm and 10 ppm in a two-cylinder, four-stroke diesel engine operating at 1500 rpm and 4.5 kW. The addition of Ag_2O nanofluid led

to improvements in brake specific fuel consumption and ignition delay, along with significant reductions in CO, HC, and smoke emissions. However, a rise in NO_x emissions was observed at higher engine loads, which the authors attributed to elevated combustion temperatures. In another study, Kumar et al. [100] examined a ferrofluid blend composed of Pongamia biodiesel (B20), ferrous-based nanoparticles, and citric acid in a single-cylinder, four-stroke diesel engine at 1500 rpm. A 1% ferrofluid addition resulted in an 8% reduction in BSFC and a notable decrease in NO_x emissions, suggesting enhanced combustion efficiency and catalytic oxidation effects. Ghanbari et al. [101] evaluated the effects of hybrid carbon nanotube (CNT) and silver (Ag) nanoparticles at concentrations of 40, 80, and 120 ppm in diesel fuel using a constant-speed engine at 2000 rpm. The study reported a 25.32% increase in NO_x emissions compared to pure diesel, indicating that while nanoparticle addition improves combustion completeness, it can also intensify in-cylinder temperatures, leading to higher nitrogen oxide formation. Similarly, Debbarma and Misra [102] tested Fe₂O₃ nanoparticles as additives in a diesel-biodiesel (80:20) blend using a modified compression ignition engine. The results revealed that nano-additive inclusion enhanced the calorific value, viscosity, and density of the fuel while reducing BSFC by 2.71%. These improvements demonstrate the dual role of iron-based nanoparticles in enhancing both energy content and fuel atomization behavior.

More recently, Pusat et al. [103] explored TiO₂ nanoparticle-enhanced nanofluids for internal combustion engine cooling and performance optimization. At a 3.8 kW engine load, the addition of 0.6% TiO₂ resulted in a 40.8% improvement in the heat transfer coefficient (UxA value). The study also incorporated an artificial neural network (ANN) model, which predicted optimal heat transfer at a 0.26% nanoparticle concentration, demonstrating the potential of intelligent modeling approaches for future nanofluid-based thermal management systems. Therefore, the integration of nanofluids into engine fuels represents a promising approach to improving combustion efficiency and reducing harmful emissions. However, the balance between enhanced combustion and NO_x formation remains a challenge. Future research should focus on optimizing nanoparticle type, concentration, and surface functionalization to achieve cleaner and more efficient combustion with minimal adverse environmental impact. The studies summarized in Table 5 demonstrate the diverse potential of nanofluid-based fuel and cooling systems in improving combustion, energy efficiency, and heat transfer performance. While metallic and metal oxide nanoparticles such as Fe₂O₃, Ag₂O, and TiO₂ enhance catalytic and thermophysical behavior, hybrid nanostructures like CNT-Ag blends offer synergistic effects that further optimize performance. Nonetheless, the variability in NO_x emissions across studies emphasizes the need for precise control of nanoparticle composition and concentration to achieve cleaner, more efficient engine operation.

Table 5. Summary of studies on nanofluid applications as engine fuel.

Nanoparticle Type	Base Fuel/Blend	Concentration	Engine Type/Test Conditions	Main Findings	Ref.
Ag ₂ O	Neem oil biodiesel	5 ppm, 10 ppm	2-cylinder, 4-stroke (1500 rpm, 4.5 kW)	Improved BSFC, reduced ignition delay, CO, HC, and smoke; NO _x increased at high load	[99]
Ferrofluid (Fe-based NPs + citric acid)	Pongamia biodiesel (B20)	1%	1-cylinder, 4-stroke (1500 rpm)	8% ↓ BSFC, significant ↓ NO _x emissions	[100]
CNT + Ag (hybrid)	Diesel	40, 80, 120 ppm	Diesel engine (2000 rpm)	25.32% ↑ NO _x emissions vs. diesel; improved combustion	[101]
Fe ₂ O ₃	Diesel-biodiesel (80:20)	Not specified	Modified CI engine	↑ Calorific value, viscosity, and density; ↓ BSFC by 2.71%	[102]
TiO ₂	Coolant-based nanofluid (engine system)	0.26-0.6%	Engine load 3.8 kW	40.8% ↑ UxA (heat transfer); ANN predicted optimal at 0.26%	[103]

8. Current Status, Challenges and Future Directions

Numerous studies have investigated the potential of nanofluids to enhance the performance of automotive radiator systems. Subhedar et al. [104] examined the thermal performance of Al₂O₃-water: ethylene glycol (EG) nanofluid at different flow rates and nanoparticle concentrations. Their results revealed a significant 78% increase in the Nusselt number at a 0.8% volume fraction and 8.82 L/min flow rate, indicating substantial improvement in convective heat transfer. Similarly, Contreras and Bandarra [105] synthesized a multi-walled carbon nanotube (MWCNT)-water:EG nanofluid that achieved a 4.7% increase in heat transfer and a 4.4% improvement in the overall heat transfer coefficient at a 0.1% volume fraction. Zhou et al. [106] compared the heat transfer performance of γ -Al₂O₃, α -Al₂O₃, and ZnO nanofluids in a propylene glycol (PG) base fluid. They reported that the heat transfer coefficient initially increased and then declined at higher nanoparticle loadings, with the optimum enhancement occurring at 0.2% for γ -Al₂O₃, 0.3% for α -Al₂O₃, and 0.3% for ZnO. Arunkumar et al. [107] investigated Al₂O₃: MgO-water: EG and Al₂O₃: TiO₂-water:EG hybrid nanofluids, observing respective improvements of 7% and 27% in heat transfer coefficient at a 0.4% volume

fraction. Similarly, Bargal et al. [108] found that ZnO-water:EG and AlN–water:EG nanofluids enhanced the heat transfer coefficient and overall heat transfer rate by 8.6% and 13.2% at a 0.5 wt% concentration.

Sahoo et al. [109] evaluated brine-based nano-coolants containing silver (Ag) and Al₂O₃ nanoparticles in propylene glycol and ethylene glycol. Their results indicated that propylene glycol-based nanofluids outperformed ethylene glycol formulations, leading to a 4% reduction in radiator size and a 25.5% decrease in pumping power. Using computational fluid dynamics, Vajjha et al. [110] modeled flat-tube radiators with Al₂O₃ and CuO nanofluids, reporting a 94% increase in average heat transfer coefficient and an 82% reduction in required pumping power at 10 vol% Al₂O₃. CuO nanofluids at 6 vol% also showed an 89% enhancement in heat transfer and a 77% reduction in pumping power. In a later study, Vajjha et al. [111] confirmed similar findings, with 3 vol% Al₂O₃ and CuO nanofluids achieving 36.6% and 49.7% increases in heat transfer, respectively, at a Reynolds number of 5500. Further studies from Hatami et al. [112] compared four different nanoparticles (CuO, TiO₂, Fe₃O₄, and Al₂O₃) dispersed in a water-EG mixture, concluding that CuO and TiO₂ offered the best thermal performance. Their results also highlighted the effect of particle shape, identifying spherical nanoparticles as the most efficient for heat transfer enhancement. Similarly, Sahoo and Sarkar [113] synthesized hybrid nanofluids using Al₂O₃ combined with Ag nanoparticles for use in a louvered fin radiator. The hybrid formulation containing 0.5% Ag and 0.5% Al₂O₃ achieved the highest heat transfer rate, reducing radiator size by 3.7% and coolant flow rate by 3.1% compared to base fluids under equivalent heat transfer conditions. Collectively, these studies demonstrate the remarkable ability of nanofluids to enhance radiator heat transfer efficiency, reduce pumping power, and enable smaller, lighter, and more energy-efficient cooling systems. Their tunable thermophysical properties and adaptability make them highly attractive for next-generation automotive thermal management technologies.

Although the existing literature demonstrates considerable progress, several challenges continue to limit the widespread adoption of nanofluids in automotive systems. Long-term dispersion stability, material compatibility with aluminum and copper alloys, and the potential for corrosion or surfactant degradation under high-temperature cyclic operation remain important concerns. Economic viability also poses a barrier, as the cost of nanoparticle synthesis, stabilization, and lifecycle management is still higher than that of conventional coolants and lubricants. Future research should prioritize developing environmentally benign nanoparticles, improving large-scale synthesis routes, and optimizing hybrid nanofluid formulations that balance thermal enhancement with acceptable viscosity and pumping power. There is also a need for long-duration reliability studies, standardized testing protocols, and more advanced modeling tools to evaluate nanofluid behavior under real driving conditions. Addressing these gaps will be essential for translating laboratory-level benefits into durable and commercially viable automotive technologies. Practical applications of nanofluids in the automotive sector extend beyond radiator cooling and include engine lubrication, brake thermal management, turbocharger intercooling, exhaust gas heat recovery, and thermal control of power electronics and batteries in electric vehicles. Their ability to improve heat transfer, reduce frictional losses, and support compact and lightweight thermal systems makes them attractive for next-generation vehicle architectures. Hybrid nanofluids in particular show strong promise due to their improved stability and tunable thermophysical behavior. Looking ahead, several research priorities remain central to enabling practical deployment. These include ensuring long-term stability under high-temperature and high-shear conditions, reducing production and lifecycle costs, improving compatibility with aluminum and copper alloys, and minimizing potential environmental and health impacts. Advancements in large-scale nanoparticle synthesis, green surfactants, and continuous-flow dispersion systems may help bridge the gap between laboratory studies and commercial use. Further progress is also expected from data-driven modeling, machine learning assisted optimization of formulations, and multi-scale simulations that better capture temperature-dependent effects and real operating conditions. Together, these efforts will be critical for translating demonstrated laboratory benefits into durable, cost-effective automotive solutions.

9. Conclusion

Nanofluids have demonstrated remarkable potential in advancing automotive technologies through enhanced thermal management, improved energy efficiency, and reduced environmental impact. The incorporation of nanoparticles such as Al₂O₃, CuO, TiO₂, and carbon-based materials significantly improves the heat transfer capability of conventional fluids, making them effective in diverse applications including engine cooling, radiators, heat exchangers, and lubrication systems. Beyond thermal enhancement, nanofluids also contribute to reduced friction and wear, leading to lower fuel consumption, extended component lifespan, and decreased maintenance requirements. Moreover, when used as fuel additives, nanofluids improve combustion efficiency and emission characteristics, offering a sustainable pathway for cleaner engine performance. Despite these advantages, several technical and practical challenges continue to limit large-scale industrial adoption. The stability and dispersion of nanoparticles remain major concerns, as agglomeration and sedimentation can diminish long-term performance and increase flow resistance. Additionally, the cost and scalability of nanoparticle synthesis present economic barriers, particularly for hybrid and surface-functionalized nanofluids. Compatibility with existing cooling and lubrication systems, as well as potential issues related to corrosion and environmental toxicity, also require careful evaluation before commercialization. Looking ahead, future research should focus on developing eco-friendly, low-cost, and scalable synthesis methods, including green chemical and continuous-flow production techniques. The use of hybrid nanofluids combining metallic, ceramic, or carbon-based nanoparticles shows strong promise for optimizing both thermal and rheological behavior. In parallel, machine learning

and artificial intelligence tools can aid in predicting performance, optimizing formulations, and tailoring nanofluid properties for specific automotive conditions. In conclusion, nanofluids represent a transformative step toward the next generation of high-performance, energy-efficient, and environmentally responsible automotive systems. Continued interdisciplinary research integrating materials science, fluid mechanics, and computational modeling will be vital to realizing their full potential and ensuring reliable, large-scale implementation in the automotive industry.

Conflict of Interest

The researchers declare no conflict of interest.

Generative AI Statement

The authors declare that no generative artificial intelligence (Gen AI) was used in the creation of this manuscript.

References

- [1] Maxwell JC. A treatise on electricity and magnetism. Clarendon press, 1873.
- [2] Choi SU. Enhancing thermal conductivity of fluids with nanoparticles. ASME international mechanical engineering congress and exposition, 1995, 17421, 99-105. DOI: 10.1115/IMECE1995-0926
- [3] Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. ASME Journal of Heat and Mass Transfer, 2003, 125(1), 151-155. DOI: 10.1115/1.1532008
- [4] Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: A review. International Journal of Thermal Sciences, 2007, 46(1), 1-19. DOI: 10.1016/j.ijthermalsci.2006.06.010
- [5] Krishnakumar TS, Sheeba A, Mahesh V, Prakash MJ. Heat transfer studies on ethylene glycol/water nanofluid containing TiO₂ nanoparticles. International Journal of Refrigeration, 2019, 102, 55-61. DOI: 10.1016/j.ijrefrig.2019.02.035
- [6] Thakur P, Sonawane SS, Sonawane SH, Bhanvase BA. Nanofluids-based delivery system, encapsulation of nanoparticles for stability to make stable nanofluids. Encapsulation of active molecules and their delivery system, 2020, 141-152. DOI: 10.1016/B978-0-12-819363-1.00009-0
- [7] Bakhtyari A, Mofarahi M. Thermophysical properties of nanofluids. Nanofluids and Mass Transfer, 2022, 39-96. DOI: 10.1016/B978-0-12-823996-4.00003-3
- [8] Bhanvase BA, Sonawane SH. A review on graphene derivatives-based nanofluids: investigation on properties and heat transfer characteristics. Industrial and Engineering Chemistry Research, 2020, 59(22), 10231-10277. DOI: 10.1021/acs.iecr.0c00865
- [9] Singh K, Barai DP, Chawhan SS, Bhanvase BA, Saharan VK. Synthesis, characterization and heat transfer study of reduced graphene oxide-Al₂O₃ nanocomposite based nanofluids: Investigation on thermal conductivity and rheology. Materials Today Communications, 2021, 26, 101986. DOI: 10.1016/j.mtcomm.2020.101986
- [10] Barai D, Parbat S, Bhanvase B. Synthesis and thermal conductivity of functionalized biocarbon-Fe₃O₄ nanocomposite-based green nanofluid for heat transfer applications. E3S Web of Conferences, 2021, 321, 01003. DOI: 10.1051/e3sconf/202132101003
- [11] Bhanvase BA, Sayankar SD, Kapre A, Fule PJ, Sonawane SH. Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Applied thermal engineering, 2018, 128, 134-140. DOI: 10.1016/j.applthermaleng.2017.09.009
- [12] Bhanvase BA, Kamath SD, Patil UP, Patil HA, Pandit AB, Sonawane SH. Intensification of heat transfer using PANI nanoparticles and PANI-CuO nanocomposite based nanofluids. Chemical Engineering and Processing: Process Intensification, 2016, 104, 172-180. DOI: 10.1016/j.cep.2016.03.004
- [13] Patel J, Soni A, Barai DP, Bhanvase BA. A minireview on nanofluids for automotive applications: Current status and future perspectives. Applied Thermal Engineering, 2023, 219(A), 119428. DOI: 10.1016/j.applthermaleng.2022.119428
- [14] Gülmüm M, Çakmak A, Osman S. Nanofluids for automotive radiators: Thermophysical properties, opportunities, challenges, and research trends: A review. Propulsion and Power Research, 2025, 14(3), 484-526. DOI: 10.1016/j.jppr.2025.08.002
- [15] Sufe GA. Advancements in hybrid nanofluids for diesel engine thermal management: a comparative review. Combustion Engines, 2026, 204(1), 104-118. DOI: 10.19206/CE-207153
- [16] Rahman MA, Hasnain SM, Pandey S, Tapalova A, Akylbekov N, Zairov R. Review on nanofluids: preparation, properties, stability, and thermal performance augmentation in heat transfer applications. ACS Omega, 2024, 9(30), 32328-32349. DOI: 10.1021/acsomega.4c03279
- [17] Kalsi S, Kumar S, Kumar A, Alam T, Sharma A, Yadav AS. A review on hybrid nanofluids for heat transfer: advancements, synthesis, challenges and applications. Discover Applied Sciences, 2025, 7(7), 698. DOI: 10.1007/s42452-025-07141-8
- [18] Tao Q, Zhong F, Deng Y, Wang Y, Su C. A review of nanofluids as coolants for thermal management systems in fuel cell vehicles. Nanomaterials, 2023, 13(21), 2861. DOI: 10.3390/nano13212861
- [19] Bhanvase BA, Barai DP, Sonawane SH, Kumar N, Sonawane SS. Intensified heat transfer rate with the use of nanofluids. Handbook of nanomaterials for industrial applications, 2018, 739-750. DOI: 10.1016/B978-0-12-813351-4.00042-0
- [20] Omri M, Aich W, Rmili H, Kolsi L. Experimental analysis of the thermal performance enhancement of a vertical helical coil heat exchanger using copper oxide-graphene (80-20%) hybrid nanofluid. Applied Sciences, 2022, 12(22), 11614. DOI: 10.3390/app122211614
- [21] Lanjewar A, Bhanvase B, Barai D, Chawhan S, Sonawane S. Intensified thermal conductivity and convective heat transfer of ultrasonically prepared CuO–polyaniline nanocomposite based nanofluids in helical coil heat exchanger. Periodica Polytechnica Chemical Engineering, 2020, 64(2), 271-282. DOI: 10.3311/PPch.13285
- [22] Younes H, Mao M, Murshed SS, Lou D, Hong H, Peterson GP. Nanofluids: Key parameters to enhance thermal conductivity and its applications. Applied Thermal Engineering, 2022, 207, 118202. DOI: 10.1016/j.applthermaleng.2022.118202
- [23] Barai DP, Bhanvase BA, Pandharipande SL. Artificial neural network for prediction of thermal conductivity of rGO–metal oxide nanocomposite-based nanofluids. Neural Computing and Applications, 2022, 34(1), 271-282. DOI: 10.1007/s00521-021-06366-z
- [24] Ahmed W, Chowdhury ZZ, Kazi SN, Johan MR, Akram N, Oon CS. Effect of ZnO-water based nanofluids from sonochemical synthesis method on heat transfer in a circular flow passage. International Communications in Heat and Mass Transfer, 2020, 114, 104591. DOI: 10.1016/j.icheatmasstransfer.2020.104591
- [25] Alyan A, Abdel-Samad S, Massoud A, Waly SA. Characterization and thermal conductivity investigation of Copper-Polyaniline Nano composite synthesized by gamma radiolysis method. Heat and Mass Transfer, 2019, 55(9), 2409-2417. DOI: 10.1007/s00231-019-02588-z
- [26] Koshta NR, Bhanvase BA, Chawhan SS, Barai DP, Sonawane SH. Investigation on the thermal conductivity and convective heat transfer enhancement in helical coiled heat exchanger using ultrasonically prepared rGO-TiO₂ nanocomposite-based nanofluids. Indian Chemical Engineer, 2020, 62(2), 202-215. DOI: 10.1080/00194506.2019.1658545
- [27] Mandhare H, P. Barai D, A. Bhanvase B, Saharan VK. Preparation and thermal conductivity investigation of reduced graphene oxide-ZnO nanocomposite-based nanofluid synthesised by ultrasound-assisted method. Materials Research Innovations, 2020, 24(7), 433-441. DOI: 10.1080/14328917.2020.1721809
- [28] Thesiya D, Patel H, Patange GS. A comprehensive review electronic cooling: a nanomaterial perspective. International Journal of Thermofluids, 2023, 19, 100382. DOI: 10.1016/j.ijft.2023.100382

[29] Bhattacharjee A, Sarkar J, Ghosh P. Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. *Renewable and Sustainable Energy Reviews*, 2018, 82, 3656-3669. DOI: 10.1016/j.rser.2017.10.097

[30] Tembhare SP, Barai DP, Bhanvase BA. Performance evaluation of nanofluids in solar thermal and solar photovoltaic systems: A comprehensive review. *Renewable and Sustainable Energy Reviews*, 2022, 153, 111738. DOI: 10.1016/j.rser.2021.111738

[31] Chichghare KK, Barai DP, Bhanvase BA. Applications of nanofluids in solar thermal systems. *Nanofluids and Their Engineering Applications*, 2019, 275-314.

[32] Amini M, Zareh M, Maleki S. Thermal performance analysis of mechanical draft cooling tower filled with rotational splash type packing by using nanofluids. *Applied Thermal Engineering*, 2020, 175, 115268. DOI: 10.1016/j.applthermaleng.2020.115268

[33] Iqbal MA, Skotnicová K, Shafiq A, Sindhu TN. Inconel alloys: A comprehensive review of properties and advanced manufacturing techniques. *International Journal of Thermofluids*, 2025, 29, 101394. DOI: 10.1016/j.ijft.2025.101394

[34] Hamid KA, Azmi WH, Mamat R, Sharma KV. Experimental investigation on heat transfer performance of TiO_2 nanofluids in water-ethylene glycol mixture. *International Communications in Heat and Mass Transfer*, 2016, 73, 16-24. DOI: 10.1016/j.icheatmasstransfer.2016.02.009

[35] Hashemi SA, Spelley RB, Adane KF, Sean Sanders R. Solids velocity fluctuations in concentrated slurries. *The Canadian Journal of Chemical Engineering*, 2016, 94(6), 1059-1065. DOI: 10.1002/cjce.22492

[36] Cunliffe CJ, Dodds JM, Dennis DJ. Flow correlations and transport behaviour of turbulent slurries in partially filled pipes. *Chemical Engineering Science*, 2021, 235, 116465. DOI: 10.1016/j.ces.2021.116465

[37] Messa GV, Malin M, Malavasi S. Numerical prediction of pressure gradient of slurry flows in horizontal pipes. *Pressure Vessels and Piping Conference*, 2013, 55683, V004T04A006. DOI: 10.1115/PVP2013-97460

[38] Kamel MS, Syeal RA, Abdulhussein AA. Heat transfer enhancement using nanofluids: a review of the recent literature. *American Journal of Nano Research and Applications*, 2016, 4(1), 1-5. DOI: 10.11648/j.nano.20160401.11

[39] Kaggwa A, Carson JK. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: a review of recent literature. *International Nano Letters*, 2019, 9(4), 277-288. DOI: 10.1007/s40089-019-00281-x

[40] De Hoog E, van Wijk JM, Talmon A. An experimental study into flow assurance of coarse inclined slurries. *T&S 2017: 18th International Conferences on Transport and Sedimentation of Solid Particles*, 2017, 113-120.

[41] Borode A, Ahmed N, Olubambi P. A review of solar collectors using carbon-based nanofluids. *Journal of Cleaner Production*, 2019, 241, 118311. DOI: 10.1016/j.jclepro.2019.118311

[42] Alawi OA, Kamar HM, Mallah AR, Mohammed HA, Kazi SN, Sidik NA, Najafi G. Nanofluids for flat plate solar collectors: Fundamentals and applications. *Journal of Cleaner Production*, 2021, 291, 125725. DOI: 10.1016/j.jclepro.2020.125725

[43] Said Z, Iqbal M, Mehmood A, Le TT, Ali HM, Cao DN, Nguyen PQ, Pham ND. Nanofluids-based solar collectors as sustainable energy technology towards net-zero goal: Recent advances, environmental impact, challenges, and perspectives. *Chemical Engineering and Processing-Process Intensification*, 2023, 191, 109477. DOI: 10.1016/j.cep.2023.109477

[44] Alshuhail LA, Shaik F, Sundar LS. Thermal efficiency enhancement of mono and hybrid nanofluids in solar thermal applications-A review. *Alexandria Engineering Journal*, 2023, 68, 365-404. DOI: 10.1016/j.aej.2023.01.043

[45] Shafiq A, Sindhu TN, Iqbal MA, Abushal TA. Nonlinear squeezing flow of stratified fluids: A comprehensive study on convective conditions and probable errors. *International Journal of Thermofluids*, 2025, 28, 101290. DOI: 10.1016/j.ijft.2025.101290

[46] Murshed SS, De Castro CN. *Nanofluids: synthesis, properties and applications*. Nova Science Publishers, 2014.

[47] Al Mdallal Q. Nanofluid applications in engineering: Modeling and simulations. *Current Nanoscience*, 2023, 19(1), 2-3. DOI: 10.2174/157341371901221122091457

[48] Kumar A, Subudhi S. Nanofluids: Definition and Classification. *Thermal Characteristics and Convection in Nanofluids*, 2021, 11-24. DOI: 10.1007/978-981-33-4248-4_2

[49] Sheremet MA. Applications of nanofluids. *Nanomaterials*, 2021, 11(7), 1716. DOI: 10.3390/nano11071716

[50] Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. *Renewable and Sustainable Energy Reviews*, 2017, 74, 638-670. DOI: 10.1016/j.rser.2017.02.073

[51] Aithal VS, Khan MA, Shetty AR, Hanumantharaju CM, Aroor G, Rai R, et al. Revolutionizing tribology: The impact of nanoparticle coatings on modern engineering. *Journal of Bio-and Triboro-Corrosion*, 2025, 11(4), 101. DOI: 10.1007/s40735-025-01020-w

[52] Iqbal MA. High-temperature oxidation resistance and surface treatment of forged steel for enhanced performance in internal combustion engines. *Ceramics International*, 2025, 51(26), 51194-51204. DOI: 10.1016/j.ceramint.2025.08.345

[53] Ali MK, Xianjun H, Mai L, Bicheng C, Turkson RF, Qingping C. Reducing frictional power losses and improving the scuffing resistance in automotive engines using hybrid nanomaterials as nano-lubricant additives. *Wear*, 2016, 364-365, 270-281. DOI: 10.1016/j.wear.2016.08.005

[54] Lo CH, Tsung TT, Lin HM. Preparation of silver nanofluid by the submerged arc nanoparticle synthesis system (SANSS). *Journal of Alloys and Compounds*, 2007, 434 659-662. DOI: 10.1016/j.jallcom.2006.08.217

[55] Shafiq A, Sindhu TN, Iqbal MA, Abushal TA. Significance of Rosseland's radiative process in magnetohydrodynamic Darcy-Forechheimer non-Newtonian fluid flow in a parabolic trough solar collector: Probable error. *International Journal of Thermofluids*, 2025, 27, 101193. DOI: 10.1016/j.ijft.2025.101193

[56] Eastman JA, Choi SU, Li S, Yu W, Thompson LJ. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. *Applied Physics Letters*, 2001, 78(6), 718-720. DOI: 10.1063/1.1341218

[57] Yu W, Xie H. A review on nanofluids: Preparation, stability mechanisms, and applications. *Journal of Nanomaterials*, 2012, 1, 435873. DOI: 10.1155/2012/435873

[58] Shafiq A, Iqbal MA, Sindhu TN, Iqbal H, Iqbal H. Synthesis, thermophysical behavior, and environmental implications of nanofluids: A comprehensive review. *Results in Engineering*, 2025, 28, 107763.

[59] Das PK, Santra AK, Ganguly R, Dash SK, Muthusamy S, Sha M, Sadasivuni KK. An extensive review of preparation, stabilization, and application of single and hybrid nanofluids. *Journal of Thermal Analysis and Calorimetry*, 2024, 149(17), 9523-9557. DOI: 10.1007/s10973-024-13449-1

[60] Shafiq A, Sindhu TN, Iqbal MA, Abushal TA. Significance of Rosseland's radiative process in magnetohydrodynamic Darcy-Forchheimer non-Newtonian fluid flow in a parabolic trough solar collector: Probable error. *International Journal of Thermofluids*, 2025, 27, 101193. DOI: 10.1016/j.ijft.2025.101193

[61] Bacha HB, Ullah N, Hamid A, Shah NA. A comprehensive review on nanofluids: synthesis, cutting-edge applications, and future prospects. *International Journal of Thermofluids*, 2024, 22, 100595. DOI: 10.1016/j.ijft.2024.100595

[62] Manikanta JE, Nikhare C, Gurajala NK, Ambhore N, Mohan RR. A review on hybrid nanofluids: preparation methods, thermo physical properties and applications. *Iranian Journal of Science and Technology, Transactions of Mechanical Engineering*, 2025, 49(1), 67-79. DOI: 10.1007/s40997-024-00772-z

[63] Shafiq A, Sindhu TN, Iqbal MA. Precision optimization of reactive squeezing flow in stratified fluids: A response surface exploration. *International Journal of Thermofluids*, 2025, 25, 101027. DOI: 10.1016/j.ijft.2024.101027

[64] Kumar A, Subudhi S. Preparation, characteristics, convection and applications of magnetic nanofluids: A review. *Heat and Mass Transfer*, 2018, 54(2), 241-265. DOI: 10.1007/s00231-017-2114-4

[65] Mohammadi SK, Etemad SG, Thibault J. Measurement of thermal properties of suspensions of nanoparticles in engine oil. *Technical Proceedings of the 2009 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech32009*, 2009, 3, 74-77.

[66] Ahmed SA, Ozkaymak M, Sözen A, Menlik T, Fahed A. Improving car radiator performance by using TiO_2 -water nanofluid. *Engineering science and technology, an international journal*, 2018, 21(5), 996-1005. DOI: 10.1016/j.jestch.2018.07.008

[67] Moldoveanu GM, Huminic G, Minea AA, Huminic A. Experimental study on thermal conductivity of stabilized Al_2O_3 and SiO_2 nanofluids and their hybrid. *International Journal of Heat and Mass Transfer*, 2018, 127(A), 450-457. DOI: 10.1016/j.ijheatmasstransfer.2018.07.024

[68] Moghaieb HS, Abdel-Hamid HM, Shedad MH, Helali AB. Engine cooling using Al_2O_3 /water nanofluids. *Applied Thermal Engineering*, 2017, 115, 152-159. DOI: 10.1016/j.applthermaleng.2016.12.099

[69] Choi C, Yoo HS, Oh JM. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. *Current Applied Physics*, 2008, 8(6), 710-712. DOI: 10.1016/j.cap.2007.04.060

[70] Yu W, Xie H, Chen L, Li Y. Enhancement of thermal conductivity of kerosene-based Fe_3O_4 nanofluids prepared via phase-transfer method. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*, 2010, 355(1-3), 109-113. DOI: 10.1016/j.colsurfa.2009.11.044

[71] De Robertis E, Cosme EH, Neves RS, Kuznetsov AY, Campos AP, Landi SM, et al. Application of the modulated temperature differential scanning calorimetry technique for the determination of the specific heat of copper nanofluids. *Applied Thermal Engineering*, 2012, 41, 10-17. DOI: 10.1016/j.applthermaleng.2012.01.003

[72] Pang C, Jung JY, Lee JW, Kang YT. Thermal conductivity measurement of methanol-based nanofluids with Al_2O_3 and SiO_2 nanoparticles. *International Journal of Heat and Mass Transfer*, 2012, 55(21-22), 5597-5602. DOI: 10.1016/j.ijheatmasstransfer.2012.05.048

[73] Kole M, Dey TK. Thermal conductivity and viscosity of Al_2O_3 nanofluid based on car engine coolant. *Journal of Physics D: Applied Physics*, 2010, 43(31), 315501. DOI: 10.1088/0022-3727/43/31/315501

[74] Vasheghani M. Enhancement of the thermal conductivity and viscosity of aluminum component- engine oil nanofluids. *Nanoscience and Technology: An International Journal*, 2012, 3(4). DOI: 10.1615/NanomechanicsSciTechnolIntJ.v3.i4.40

[75] Chawhan SS, Barai DP, Bhanvase BA. Investigation on thermophysical properties, convective heat transfer and performance evaluation of ultrasonically synthesized Ag-doped TiO_2 hybrid nanoparticles based highly stable nanofluid in a minichannel. *Thermal Science and Engineering Progress*, 2021, 25, 100928. DOI: 10.1016/j.tsep.2021.100928

[76] Barai DP, Chichghare KK, Chawhan SS, Bhanvase BA. Synthesis and characterization of nanofluids: thermal conductivity, electrical conductivity and particle size distribution. *Nanotechnology for Energy and Environmental Engineering*, 2020, 1-49. DOI: 10.1007/978-3-030-33774-2_1

[77] Xia G, Jiang H, Liu R, Zhai Y. Effects of surfactant on the stability and thermal conductivity of Al_2O_3 /de-ionized water nanofluids. *International Journal of Thermal Sciences*, 2014, 84, 118-124. DOI: 10.1016/j.ijthermalsci.2014.05.004

[78] Einstein A. *Investigations on the Theory of the Brownian Movement*. Courier Corporation, 1956.

[79] Kunitz M. An empirical formula for the relation between viscosity of solution and volume of solute. *The Journal of General Physiology*, 1926, 9(6), 715-725. DOI: 10.1085/jgp.9.6.715

[80] Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. *Experimental Heat Transfer an International Journal*, 1998, 11(2), 151-170. DOI: 10.1080/08916159808946559

[81] Gonçalves I, Souza R, Coutinho G, Miranda J, Moita A, Pereira JE, et al. Thermal conductivity of nanofluids: A review on prediction models, controversies and challenges. *Applied Sciences*, 2021, 11(6), 2525. DOI: 10.3390/app11062525

[82] Senthilkumar G. Novel Approach to augment thermal conductivity of dihybrid nanofluids. *Journal of Thermophysics and Heat Transfer*, 2024, 38(4), 468-477. DOI: 10.2514/1.t6932

[83] Oshionebo FD, Kavaz D, Ozsahin DU, Adedeji M, Uzun B, Dagbasi M, Adun H. Optimized nanofluid coolants enhance thermal performance in ruffled fin automotive radiators. *Scientific Reports*, 2025, 15, 43756. DOI: 10.1038/s41598-025-26764-w

[84] Razavi SR, Sadeghalvaad M, Sabbaghi S. Experimental investigation on the stability and thermophysical properties of Al_2O_3 /DW and CuO /DW nanofluids to be utilized in an indirect water bath heater. *Journal of Thermal Analysis and Calorimetry*, 2020, 142, 2303-2318. DOI: 10.1007/s10973-020-09592-0

[85] Coccia G, Tomassetti S, Di Nicola G. Thermal conductivity of nanofluids: A review of the existing correlations and a scaled semi-empirical equation. *Renewable and Sustainable Energy Reviews*, 2021, 151, 111573. DOI: 10.1016/j.rser.2021.111573

[86] Cardoso BD, Souza A, Nobrega G, Afonso IS, Neves LB, Faria C, et al. Progress in nanofluid technology: From conventional to green nanofluids for biomedical, heat transfer, and machining applications. *Nanomaterials*, 2025, 15(16), 1242. DOI: 10.3390/nano15161242

[87] Elkelawy M, El Shenawy EA, Bastawissi HA, Shams MM, Panchal H. A comprehensive review on the effects of diesel/biofuel blends with nanofluid additives on compression ignition engine by response surface methodology. *Energy Conversion and Management*, 2022, 14, 100177. DOI: 10.1016/j.ecmx.2021.100177

[88] Elkelawy M, Etaiw SE, Bastawissi HA, Marie H, Elbanna A, Panchal H, Sadasivuni K, Bhargav H. Study of diesel-biodiesel blends combustion and emission characteristics in a CI engine by adding nanoparticles of Mn (II) supramolecular complex. *Atmospheric Pollution Research*, 2020, 11(1), 117-128. DOI: 10.1016/j.apr.2019.09.021

[89] Srinivasan SK, Kuppusamy R, Krishnan P. Effect of nanoparticle-blended biodiesel mixtures on diesel engine performance, emission, and combustion characteristics. *Environmental science and pollution research*, 2021, 28(29), 39210-39226. DOI: 10.1007/s11356-021-13367-x

[90] Chakraborty S, Panigrahi PK. Stability of nanofluid: A review. *Applied Thermal Engineering*, 2020, 174, 115259. DOI: 10.1016/j.applthermaleng.2020.115259

[91] Alirezaie A, Hajmohammad MH, Ahangar MR, Esfe MH. Price-performance evaluation of thermal conductivity enhancement of nanofluids with different particle sizes. *Applied Thermal Engineering*, 2018, 128, 373-380. DOI: 10.1016/j.applthermaleng.2017.08.143

[92] Esfe MH, Alirezaie A, Toghraie D. Thermal conductivity of ethylene glycol based nanofluids containing hybrid nanoparticles of SWCNT and Fe_3O_4 and its price-performance analysis for energy management. *Journal of Materials Research and Technology*, 2021, 14, 1754-1760. DOI: 10.1016/j.jmrt.2021.07.033

[93] Mukherjee S, Mishra PC, Chaudhuri P. Thermo-economic performance analysis of Al_2O_3 -water nanofluids—an experimental investigation. *Journal of Molecular Liquids*, 2020, 299, 112200. DOI: 10.1016/j.molliq.2019.112200

[94] Kulkarni DP, Vajjha RS, Das DK, Oliva D. Application of aluminum oxide nanofluids in diesel electric generator as jacket water coolant. *Applied Thermal Engineering*, 2008, 28(14-15), 1774-1781. DOI: 10.1016/j.applthermaleng.2007.11.017

[95] Naraki M, Peyghambarzadeh SM, Hashemabadi SH, Vermahmoudi Y. Parametric study of overall heat transfer coefficient of CuO /water nanofluids in a car radiator. *International Journal of Thermal Sciences*, 2013, 66, 82-90. DOI: 10.1016/j.ijthermalsci.2012.11.013

[96] Chavan D, Pise AT. Performance investigation of an automotive car radiator operated with nanofluid as a coolant. *Journal of Thermal Science and Engineering Applications*, 2014, 6(2), 021010. DOI: 10.1115/1.4025230

[97] Chougule SS, Sahu SK. Comparative study of cooling performance of automobile radiator using Al_2O_3 -water and carbon nanotube-water nanofluid. *Journal of Nanotechnology in Engineering and Medicine*, 2014, 5(1), 010901. DOI: 10.1115/1.4026971

[98] Hussein AM, Bakar RA, Kadrigama K, Sharma KV. Heat transfer enhancement using nanofluids in an automotive cooling system. *International Communications in Heat and Mass Transfer*, 53, 195-202. DOI: 10.1016/j.icheatmasstransfer.2014.01.003

[99] Devarajan Y, Munuswamy DB, Mahalingam A. Influence of nano-additive on performance and emission characteristics of a diesel engine running on neat neem oil biodiesel. *Environmental Science and Pollution Research*, 2018, 25, 26167-26172. DOI: 10.1007/s11356-018-2618-6

[100] Kumar S, Dinesha P, Bran I. Influence of nanoparticles on the performance and emission characteristics of a biodiesel fuelled engine: an experimental analysis. *Energy*, 140, 98-105. DOI: 10.1016/j.energy.2017.08.079

[101] Ghanbari M, Najafi G, Ghobadian B, Yusaf T, Carlucci AP, Kiani MK. Performance and emission characteristics of a CI engine using nano particles additives in biodiesel-diesel blends and modeling with GP approach. *Fuel*, 202, 699-716. DOI: 10.1016/j.fuel.2017.04.117

[102] Debbarma S, Misra RD. Effects of iron nanoparticle fuel additive on the performance and exhaust emissions of a compression ignition engine fueled with diesel and biodiesel. *Journal of Thermal Science and Engineering Applications*, 2018, 10(4), 041002. DOI: 10.1115/1.4038708

[103] Pusat S, Karagöz Y, Attar A, Karagoz S. A study of TiO_2 -enhanced nanofluids in internal combustion engines using neural networks. *Scientific Reports*, 2024, 14(1), 19251. DOI: 10.1038/s41598-024-68701-3

[104] Subhedar DG, Ramani BM, Gupta A. Experimental investigation of heat transfer potential of Al_2O_3 /Water-Mono Ethylene Glycol nanofluids as a car radiator coolant. *Case studies in thermal engineering*, 2018, 11, 26-34. DOI: 10.1016/j.csite.2017.11.009

[105] Contreras EM, Bandarra Filho EP. Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range. *Applied Thermal Engineering*, 2022, 207, 118149. DOI: 10.1016/j.applthermaleng.2022.118149

[106] Zhou X, Wang Y, Zheng K, Huang H. Comparison of heat transfer performance of ZnO -PG, α - Al_2O_3 -PG, and γ - Al_2O_3 -PG nanofluids in car radiator. *Nanomaterials and Nanotechnology*, 2019, 9. DOI: 10.1177/1847980419876465

[107] Arunkumar T, Anish M, Jayaprabakar J, Beemkumar N. Enhancing heat transfer rate in a car radiator by using Al_2O_3 nanofluid as a coolant. *International Journal of Ambient Energy*, 2019, 40(4), 367-373. DOI: 10.1080/01430750.2017.1392356

[108] Bargal MH, Souby MM, Abdelkareem MA, Sayed M, Tao Q, Chen M, et al. Experimental investigation of the thermal performance of a radiator using various nanofluids for automotive PEMFC applications. *International Journal of Energy Research*, 2021, 45(5), 6831-6849. DOI: 10.1002/er.6274

[109] Sahoo RR, Ghosh P, Sarkar J. Performance enhancement for wavy fin automotive radiator using optimum PG brine based nanofluids. *Heat Transfer—Asian Research*, 2017, 46(6), 585-597. DOI: 10.1002/htj.21232

[110] Vajjha RS, Das DK, Namburu PK. Numerical study of fluid dynamic and heat transfer performance of Al_2O_3 and CuO nanofluids in the flat tubes of a radiator. *International Journal of Heat and Fluid Flow*, 2010, 31(4), 613-621. DOI: 10.1016/j.ijheatfluidflow.2010.02.016

[111] Vajjha RS, Das DK, Ray DR. Development of new correlations for the Nusselt number and the friction factor under turbulent flow of nanofluids in flat tubes. *International Journal of Heat and Mass Transfer*, 2015, 80, 353-367. DOI: 10.1016/j.ijheatmasstransfer.2014.09.018

[112] Hatami M, Jafaryar M, Zhou J, Jing D. Investigation of engines radiator heat recovery using different shapes of nanoparticles in $H_2O/(CH_2OH)_2$ based nanofluids. *International Journal of Hydrogen Energy*, 2017, 42(16), 10891-10900. DOI: 10.1016/j.ijhydene.2017.01.196

[113] Sahoo RR, Sarkar J. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator. *Heat and Mass transfer*, 2017, 53(6), 1923-1931. DOI: 10.1007/s00231-016-1951-x